A Weil-petersson Type Metric on Spaces of Metric Graphs

نویسندگان

  • Mark Pollicott
  • Richard Sharp
چکیده

Given a compact topological surface V with negative Euler characteristic, the Teichmüller space Teich(V ) describes the marked Riemann metrics (with constant curvature κ = −1) which it supports. More precisely, Teich(V ) is the set of equivalence classes (Vg, φ), where Vg is a hyperbolic surface with Riemann metric g and φ : V → Vg is a homeomorphism, with (Vg1 , φ1) equivalent to (Vg2 , φ2) if there is an isometry ψ : Vg1 → Vg2 such that ψ ◦ φ1 is isotopic to φ2. The moduli space Mod(V ) describes the unmarked Riemann metrics on V and is obtained by quotienting Teich(V ) by the Mapping Class Group of V . There are several different metrics which can naturally be defined on Teich(V ), for example, the Teichmüller metric and the Weil-Petersson metric, both of which are invariant under the Mapping Class Group and descend to Mod(V ). There is a particularly illuminating formulation of the Weil-Petersson metric, due to Wolpert, in terms of the second derivative of the length of a typical geodesic on V [Wo]. Recently, a more dynamical characterization of this was proposed by Curt McMullen, who thereby extended the notion of the Weil-Petersson metric to a variety of settings (e.g., from Fuchsian to QuasiFuchsian groups) [Mc]. In this note we will introduce an analogue of the Weil-Petersson metric for families of metric graphs, and explore its properties through some simple examples. To formulate an analogous definition for families of metric graphs we can replace the surface V by a finite (undirected) graph G with edge set E . We can replace the Riemann metrics by edge weightings l : E → R.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Weil-petersson Symmetry of Moduli Spaces of Riemann Surfaces

In this article, we give a perspective on several results, old and new, concerning geometric structures of moduli spaces of Riemann surfaces with respect to the L2 metric (Weil-Petersson metric) on deformations of hyperbolic metrics. In doing so, we aim to demonstrate that the Weil-Petersson metric is suited to account for the geometry of moduli spaces while the topological type, genus in parti...

متن کامل

Extended graphs based on KM-fuzzy metric spaces

This paper,  applies the concept  of KM-fuzzy metric spaces and  introduces a novel concept of KM-fuzzy metric  graphs based on KM-fuzzy metric spaces.  This study, investigates the finite KM-fuzzy metric spaces with respect to metrics and KM-fuzzy metrics and constructs KM-fuzzy metric spaces on any given non-empty sets. It tries to  extend   the concept of KM-fuzzy metric spaces to  a larger ...

متن کامل

Numerical Weil-petersson Metrics on Moduli Spaces of Calabi-yau Manifolds

We introduce a simple and very fast algorithm that computes Weil-Petersson metrics on moduli spaces of polarized Calabi-Yau manifolds. Also, by using Donaldson’s quantization link between the infinite and finite dimensional G.I.T quotients that describe moduli spaces of varieties, we define a natural sequence of Kähler metrics. We prove that the sequence converges to the Weil-Petersson metric. ...

متن کامل

On the Weil-petersson Volume and the First Chern Class of the Moduli Space of Calabi-yau Manifolds

In this paper, we continue our study of the Weil-Petersson geometry as in the previous paper [10], in which we have proved the boundedness of the Weil-Petersson volume, among the other results. The main results of this paper are that the volume and the integrations of Ricci curvature of the Weil-Petersson metric on the moduli space are rational numbers. In particular, the Ricci curvature define...

متن کامل

O ct 2 00 5 ON THE WEIL - PETERSSON VOLUME AND THE FIRST CHERN CLASS OF THE MODULI SPACE OF CALABI - YAU MANIFOLDS

In this paper, we continue our study of the Weil-Petersson geometry as in the previous paper [10], in which we have proved the boundedness of the Weil-Petersson volume, among the other results. The main results of this paper are that the volume and the integrations of Ricci curvature of the Weil-Petersson metric on the moduli space are rational numbers. In particular, the Ricci curvature define...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011